Designing and Implementing a Data Science Solution on Azure (DP-100)

DP-100
IT professional

Deze training behandelt de basisprincipes van data science en machine learning in Microsoft Azure. Je leert hoe je machine learning-workloads implementeert en uitvoert met Azure Machine Learning Service. Dit omvat het plannen en creëren van een werkomgeving voor data science-workloads, het uitvoeren van experimenten en het trainen van modellen.

Leerdoelen

Na deze training kun je:

  • Een geschikte werkomgeving op Azure inrichten voor data science-workloads.
  • Data voorbereiden, transformeren en analyseren.
  • Machine learning-modellen bouwen, trainen en evalueren.
  • Azure Machine Learning gebruiken om modellen te implementeren en te beheren.
  • Automatisering en optimalisatie toepassen binnen ML-workflows.

 

Deze training is bedoeld voor data scientists die verantwoordelijk zijn voor het trainen en inzetten van machine learning-modellen binnen Microsoft Azure.

Voor de rol van een succesvolle Azure Data Scientist heb je de volgende voorkennis nodig:

  • Basiskennis van cloud computing concepten.
  • Ervaring met algemene data science tools en technieken.
  • Ervaring met machine learning tools en technieken.

Specifiek:

  • Vaardigheid in het creëren van cloud resources in Microsoft Azure.
  • Kennis van Python voor data-analyse en visualisatie.
  • Ervaring met het trainen en valideren van machine learning-modellen met veelgebruikte frameworks zoals Scikit-Learn, PyTorch en TensorFlow.
  • Kennis van het werken met containers.

Module 1: Introduction to Azure Machine Learning

In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace.

  • Getting Started with Azure Machine Learning
  • Azure Machine Learning Tools

Lab : Creating an Azure Machine Learning WorkspaceLab : Working with Azure Machine Learning Tools

After completing this module, you will be able to

  • Provision an Azure Machine Learning workspace
  • Use tools and code to work with Azure Machine Learning

Module 2: No-Code Machine Learning with Designer

This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume.

  • Training Models with Designer
  • Publishing Models with Designer

Lab : Creating a Training Pipeline with the Azure ML DesignerLab : Deploying a Service with the Azure ML Designer

After completing this module, you will be able to

  • Use designer to train a machine learning model
  • Deploy a Designer pipeline as a service

Module 3: Running Experiments and Training Models

In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models.

  • Introduction to Experiments
  • Training and Registering Models

Lab : Running ExperimentsLab : Training and Registering Models

After completing this module, you will be able to

  • Run code-based experiments in an Azure Machine Learning workspace
  • Train and register machine learning models

Module 4: Working with Data

Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments.

  • Working with Datastores
  • Working with Datasets

Lab : Working with DatastoresLab : Working with Datasets

After completing this module, you will be able to

  • Create and consume datastores
  • Create and consume datasets

Module 5: Compute Contexts

One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you’ll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs.

  • Working with Environments
  • Working with Compute Targets

Lab : Working with EnvironmentsLab : Working with Compute Targets

After completing this module, you will be able to

  • Create and use environments
  • Create and use compute targets

Module 6: Orchestrating Operations with Pipelines

Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it’s time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you’ll explore how to define and run them in this module.

  • Introduction to Pipelines
  • Publishing and Running Pipelines

Lab : Creating a PipelineLab : Publishing a Pipeline

After completing this module, you will be able to

  • Create pipelines to automate machine learning workflows
  • Publish and run pipeline services

Module 7: Deploying and Consuming Models

Models are designed to help decision making through predictions, so they’re only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing.

  • Real-time Inferencing
  • Batch Inferencing

Lab : Creating a Real-time Inferencing ServiceLab : Creating a Batch Inferencing Service

After completing this module, you will be able to

  • Publish a model as a real-time inference service
  • Publish a model as a batch inference service

Module 8: Training Optimal Models

By this stage of the course, you’ve learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you’ll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data.

  • Hyperparameter Tuning
  • Automated Machine Learning

Lab : Tuning HyperparametersLab : Using Automated Machine Learning

After completing this module, you will be able to

  • Optimize hyperparameters for model training
  • Use automated machine learning to find the optimal model for your data

Module 9: Interpreting Models

Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It’s increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model’s behavior. This module describes how you can interpret models to explain how feature importance determines their predictions.

  • Introduction to Model Interpretation
  • using Model Explainers

Lab : Reviewing Automated Machine Learning ExplanationsLab : Interpreting Models

After completing this module, you will be able to

  • Generate model explanations with automated machine learning
  • Use explainers to interpret machine learning models

Module 10: Monitoring Models

After a model has been deployed, it’s important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data.

  • Monitoring Models with Application Insights
  • Monitoring Data Drift

Lab : Monitoring a Model with Application InsightsLab : Monitoring Data Drift

After completing this module, you will be able to

  • Use Application Insights to monitor a published model
  • Monitor data drift